什么是拓扑学?拓扑学的历史。
拓扑一开始是一门具象学科,topology这个名字最早可能起源于Poincare的论文Papers on Topology,但是相关问题的研究,从Riemann开创Riemann Geometry和Aleksandr Lyapunov基于一些物理问题开始研究动力系统的时候就开始了。研究19世纪上半页,很多真正一流的数学家都在研究代数拓扑,如Shiing-Shen Chern,Serre, Weil, Grothendieck, Milnor,并且在20世纪上半页,这一门学科极大的被严格化,内涵被相当程度的丰富了,后续的数学发展表明,这门学科和很多看似不相关的学科有着很多不可思议的联系,而很多困难的问题最后被发现本质上是一个拓扑问题,比如有限域上Riemann猜想的解决,又或者sandwich theorem用来得到Kakeya猜想的进展都是很好的例子,另一方面,很多源于topology本身的猜想,比如Poincare猜想,被发现在原有领域是相当困难的,而被用geometric flow的方法解决,这些例子均表明topology无疑处在数学最深刻最内核的概念和对象附近。
拓扑学和其他数学课程的联系
而拓扑学同时也是一门内容丰富的学科,作为数学系本科生的基础课,至少需要掌握的应该是点集拓扑和代数拓扑,这是学习K3 Surface, Riemann Surface, 3D Topology, Algebraic Geometry等课程的的坚实的基础。
拓扑学的内容
Topological Spaces | Borel Sets |
Continuity, Compactness and Connectedness | Metric Spaces |
Fundamental Group | Homology Group |
Universal Cover | Cellular Homology |
Universal Coefficient Theorem for Cohomology | Definition of Higher Homotopy Groups |
Computation of Homology of Projective Spaces | Kunneth Theorem |
Poincare Duality | Surfaces |
Complexes and Cellular Homology | Homotopy Exact Sequence of a Pair |
Urysohn’s Lemma | Hausdorff Spaces |
Quotient Topology | Axiomatic Properties |
Tietze Extension Theorem and Applications | Hurewicz Theorem |
Singular Cohomology | Ruled Surface and Conical Surface |
Axiomatic Properties | Betti Numbers and Euler Characteristics |
Stoke’s Theorem | Whitehead Theorem |
Hurewicz Homomorphism | Covering Spaces |
Fibration | Smooth Manifolds |
Product Topology | Tychonoff’s Theorem |
Connected Path | Homeomorphisms |
Lindelof and Compact Spaces | Pasting Lemma |
Continuous Maps | Urysohn Embedding Lemma and Metrization Theorem |
Baire Category Theorem | Subspace Topology |
Universal Coefficient Theorem for Homology | Simple Computation of Homolgy Groups |
Cellular Homology | Properly Discontinuous Action |
Lifting Properties | Deck Transformations |
Classification Theorem | Principal Bundles and Fibre Bundles |
Borsuk-Ulam Theorem | Linking Number and Index Of Vector Fields |
Clutching Construction | The Poincare-Hopf Theorem |
Mayer-Vietoris Sequence | Developable Surface |
Hausdorff Topology | Differential Forms on Manifolds |
Computation of Cohomology | Simplicial Complex and Simplicial Homology |
Topological Manifolds | Van Kampen’s Theorem |
以下是一次MATM042/3/SEMR2拓扑学考试的案例
以下是一次MATM042/3/SEMR2拓扑学考试的案例
(a) $\quad X=\{1,2,3,4\}, \quad \tau=\{\emptyset, X,\{1\},\{1,3\},\{2,3,4\}\}$
(b) $\quad X=\{1,2,3,4,5,6\}, \quad \tau=\{\emptyset, X,\{3,4\},\{1,2,3,4\},\{3,4,5,6\}\}$
(c) $\quad X=\mathbb{R}, \quad \tau=\{\mathbb{R}, A \subseteq \mathbb{R} \mid \mathbb{R} \backslash A$ an uncountable set $\}$
In each of these cases, determine which of the three properties (O1), (O2) and (O3) of a topology are satisfied by $\tau$. Justify your answers. Hence determine whether or not $\tau$ defines a topology on the given set $X$. [12 marks]
(a) Let $(X, \tau)$ be a topological space. Let $A \subseteq X .$ Let $x \in A$.
Let $\mathfrak{B}(x)$ be a neighbourhood basis of $x$ in the topology $\tau$ on $X$.
Prove that
$$
\{B \cap A \mid B \in \mathfrak{B}(x)\}
$$
is a neighbourhood basis of $x$ in the induced topology $\left.\tau\right|_{A}$ on $A$. marks]
(b) Let $X=\mathbb{R}$. For each $x \in \mathbb{R}$, let
$$
\mathfrak{B}(x):=\{(y, x] \mid y \in \mathbb{R}, y<x\}
$$
be a neighbourhood basis of $x$ which defines the topology $\tau$ on $\mathbb{R}$. Let $A=[0,1] \subseteq \mathbb{R}$. Use the result in (a) to find a neighbourhood basis of a point $x \in A$ in the induced topology $\left.\tau\right|_{A}$ on $A$.
$\{$ Hint: Consider the cases $x=0$ and $0<x \leq 1$ separately, and simplify your results. $\}$ $[5$ marks $]$
Consider the topological space $(\mathbb{R}, \sigma)$ with standard metric topology $\sigma$ on $\mathbb{R}$. Prove that the topological space $(\mathbb{R}, \sigma)$ is second countable. $\quad$ [6 marks]
Let $(X, \tau)$ be a topological space. Let $A \subseteq X$ and $B \subseteq X$. Use the definition of the interior of a subset to prove that
$$
(A \cup B)^{\circ} \supseteq A^{\circ} \cup B^{\circ}
$$
Determine whether or not
$$
(A \cup B)^{\circ} \subseteq A^{\circ} \cup B^{\circ}
$$
If so, give a proof. If not, give a counterexample.
拓扑可以很稀疏所以反例是显然存在的
Let $X=\mathbb{R}^{2}$ with standard metric topology $\tau$ on $\mathbb{R}^{2},$ and let $Y=\mathbb{R}$ with standard metric topology $\sigma$ on $\mathbb{R}$. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the map
$$
f(x, y):=x+y \quad \text { for } \quad(x, y) \in \mathbb{R}^{2}
$$
Prove that the function $f$ is continuous. Determine whether or not $f$ is a homeomorphism. Justify your answer. $\quad$ [12 marks]
按照定义直接验证
topology3.26exam-2
理科代写答疑辅导,请认准UpriviateTA
拓扑,topology答疑写请认准UpriviateTA. UpriviateTA为您的留学生涯保驾护航。
更多内容请参阅另外一份实分析代写.