什么是拓扑学?拓扑学的历史。
拓扑一开始是一门具象学科,topology这个名字最早可能起源于Poincare的论文Papers on Topology,但是相关问题的研究,从Riemann开创Riemann Geometry和Aleksandr Lyapunov基于一些物理问题开始研究动力系统的时候就开始了。研究19世纪上半页,很多真正一流的数学家都在研究代数拓扑,如Shiing-Shen Chern,Serre, Weil, Grothendieck, Milnor,并且在20世纪上半页,这一门学科极大的被严格化,内涵被相当程度的丰富了,后续的数学发展表明,这门学科和很多看似不相关的学科有着很多不可思议的联系,而很多困难的问题最后被发现本质上是一个拓扑问题,比如有限域上Riemann猜想的解决,又或者sandwich theorem用来得到Kakeya猜想的进展都是很好的例子,另一方面,很多源于topology本身的猜想,比如Poincare猜想,被发现在原有领域是相当困难的,而被用geometric flow的方法解决,这些例子均表明topology无疑处在数学最深刻最内核的概念和对象附近。
拓扑学和其他数学课程的联系
而拓扑学同时也是一门内容丰富的学科,作为数学系本科生的基础课,至少需要掌握的应该是点集拓扑和代数拓扑,这是学习K3 Surface, Riemann Surface, 3D Topology, Algebraic Geometry等课程的的坚实的基础。
拓扑学的内容
Topological Spaces | Borel Sets |
Continuity, Compactness and Connectedness | Metric Spaces |
Fundamental Group | Homology Group |
Universal Cover | Cellular Homology |
Universal Coefficient Theorem for Cohomology | Definition of Higher Homotopy Groups |
Computation of Homology of Projective Spaces | Kunneth Theorem |
Poincare Duality | Surfaces |
Complexes and Cellular Homology | Homotopy Exact Sequence of a Pair |
Urysohn’s Lemma | Hausdorff Spaces |
Quotient Topology | Axiomatic Properties |
Tietze Extension Theorem and Applications | Hurewicz Theorem |
Singular Cohomology | Ruled Surface and Conical Surface |
Axiomatic Properties | Betti Numbers and Euler Characteristics |
Stoke’s Theorem | Whitehead Theorem |
Hurewicz Homomorphism | Covering Spaces |
Fibration | Smooth Manifolds |
Product Topology | Tychonoff’s Theorem |
Connected Path | Homeomorphisms |
Lindelof and Compact Spaces | Pasting Lemma |
Continuous Maps | Urysohn Embedding Lemma and Metrization Theorem |
Baire Category Theorem | Subspace Topology |
Universal Coefficient Theorem for Homology | Simple Computation of Homolgy Groups |
Cellular Homology | Properly Discontinuous Action |
Lifting Properties | Deck Transformations |
Classification Theorem | Principal Bundles and Fibre Bundles |
Borsuk-Ulam Theorem | Linking Number and Index Of Vector Fields |
Clutching Construction | The Poincare-Hopf Theorem |
Mayer-Vietoris Sequence | Developable Surface |
Hausdorff Topology | Differential Forms on Manifolds |
Computation of Cohomology | Simplicial Complex and Simplicial Homology |
Topological Manifolds | Van Kampen’s Theorem |
以下是一次MATM042/3/SEMR2拓扑学考试的案例
以下是一次MATM042/3/SEMR2拓扑学考试的案例
(a) X={1,2,3,4},τ={∅,X,{1},{1,3},{2,3,4}}
(b) X={1,2,3,4,5,6},τ={∅,X,{3,4},{1,2,3,4},{3,4,5,6}}
(c) X=R,τ={R,A⊆R∣R∖A an uncountable set }
In each of these cases, determine which of the three properties (O1), (O2) and (O3) of a topology are satisfied by τ. Justify your answers. Hence determine whether or not τ defines a topology on the given set X. [12 marks]
(a) Let (X,τ) be a topological space. Let A⊆X. Let x∈A.
Let B(x) be a neighbourhood basis of x in the topology τ on X.
Prove that
{B∩A∣B∈B(x)}
is a neighbourhood basis of x in the induced topology τ|A on A. marks]
(b) Let X=R. For each x∈R, let
B(x):={(y,x]∣y∈R,y<x}
be a neighbourhood basis of x which defines the topology τ on R. Let A=[0,1]⊆R. Use the result in (a) to find a neighbourhood basis of a point x∈A in the induced topology τ|A on A.
{ Hint: Consider the cases x=0 and 0<x≤1 separately, and simplify your results. } [5 marks ]
Consider the topological space (R,σ) with standard metric topology σ on R. Prove that the topological space (R,σ) is second countable. [6 marks]
Let (X,τ) be a topological space. Let A⊆X and B⊆X. Use the definition of the interior of a subset to prove that
(A∪B)∘⊇A∘∪B∘
Determine whether or not
(A∪B)∘⊆A∘∪B∘
If so, give a proof. If not, give a counterexample.
拓扑可以很稀疏所以反例是显然存在的
Let X=R2 with standard metric topology τ on R2, and let Y=R with standard metric topology σ on R. Let f:R2→R be the map
f(x,y):=x+y for (x,y)∈R2
Prove that the function f is continuous. Determine whether or not f is a homeomorphism. Justify your answer. [12 marks]
按照定义直接验证
topology3.26exam-2
理科代写答疑辅导,请认准UpriviateTA
拓扑,topology答疑写请认准UpriviateTA. UpriviateTA为您的留学生涯保驾护航。
更多内容请参阅另外一份实分析代写.