这是一份华盛顿大学 AMATH 562 A 随机过程代写的案例。

数学代写|随机过程AMATH 562 A代写
Problem 1.

Suppose $M_{n}$ is a non-negative Martingale. Use Theorem $5.13$ to show that for all $\lambda>0$
$$
\mathbb{P}\left(\max {0 \leq k \leq n} M{k}>\lambda\right) \leq \frac{\mathbb{E}\left(M_{n}\right)}{\lambda}
$$
Note that the above inequality is an improvement of the well-known Markov’s inequality
$$
\mathbb{P}(|X|>\lambda) \leq \frac{\mathbb{E}|X|}{\lambda}
$$

Problem 2.

Suppose $M_{n}=X_{1}+\cdots+X_{n}$ with $M_{0}=0$ is a Martingale wrt $X_{n}$. Show that (a) for all $n \geq 1, \mathbb{E}\left(X_{n}\right)=0$.
(b) $\operatorname{Var}\left(M_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)$

Problem 3.

Consider a discrete M.C. on $S={0,1,2, \ldots}$ whose transition probabilities are defined as follows: $p(k, \ell)=\mathbb{P}{Y+Z=\ell}$ where $Y \sim \operatorname{binom}(k, p)$ and $Z \sim \operatorname{Pois}(\lambda)$ are independent. Suppose further that $X_{0} \sim \operatorname{Pois}(\gamma)$
(a) What is the distribution of $X_{1}$ ?
(b) What is the distribution of $X_{n}$ ?
(c) Find the limiting distribution of $X_{n}$ as $n \rightarrow \infty$, i.e. $\lim {n \rightarrow \infty} \mathbb{P}\left(X{n}=k\right)$.
(d) Find the stationary distribution of the chain.
HINT: moment-gencrating function nethod.

数学代写|随机过程AMATH 562 A代写

real analysis代写analysis 2, analysis 3请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

抽象代数Galois理论代写

偏微分方程代写成功案例

代数数论代考

概率论代考

离散数学代写

集合论数理逻辑代写案例

时间序列分析代写

离散数学网课代修

AMATH 562 A: Advanced Stochastic Processes

  • WINTER 2022

View in MyPlanView in Time ScheduleCourse WebsiteMeeting Time: MWF 11:30am – 12:20pmLocation: DEN 113SLN: 10242Joint Sections: AMATH 562 BInstructor:

Hong Quian

Hong QianView profileCatalog Description: Stochastic dynamical systems aimed at students in applied math. Introduces basic concepts in continuous stochastic processes including Brownian motion, stochastic differential equations, Levy processes, Kolmogorov forward and backward equations, and Hamilton-Jacobi-Bellman partial differential equations. Presents theories with applications from physics, biology, and finance. Prerequisite: AMATH 561 or permission of instructor; recommended: undergraduate course in probability and statistics. Offered: W.Credits: 5.0Status: ActiveLast updated: January 4, 2022 – 10:13am