如何才能理解Precise definition of Limit
尤其是在证明定理的时候,包括与极限相关的加法,减法,乘法定理。

极限的精确定义

设 $f: \mathbb{D} \subset \mathbb{R} \rightarrow \mathbb{R}$ 是一个定义在实数上的函数。并在某个开区间 $x>A$ 或 $x<A$ $\begin{array}{ll}\text { 上有定义。 } & L \text { 是一个给定的实数。 } c \text { 是一个实数, 并且函数 } f \text { 在 } c \text { 的某个去心邻域上有定 }\end{array}$ 义。如果对任意的正实数 $\epsilon$, 都存在一个正实数 $\delta$ ,使得对任意的实数 $x$ ,只要 $f$ 在点 $x$ 处有定义, 并且 $x$ 在 $c$ 的某个 $\delta$ – (去心) 邻域中 (即 $|x-c| \leqslant \delta$ ) , 就有 $|f(x)-L| \leqslant \epsilon,$ 那么就称 $L$ 是函数 $f$ 在 $x$ 趋于 $c$ 时的极限, 或简称 $L$ 为 $f$ 在 $c$ 的极限, 记为 $\lim _{x \rightarrow c} f(x)=L$ 。反之则称 $L$ 不是 $f$ 在 $x$ 趋于 $c$ 时的极限。


多数初次学习极限定义的同学觉得不可接受,有心理障碍的原因有以下两点.
1. 大家更加适应和习惯自然语言, 而第一次认真的接触逻辑语言是会不适应的, 就像你第一次学匀 编程一样, 肯定既兴奋又不太适应;
2 . 练习或是接触的频率不够, 接触多了你就会觉得相对直观和舒服多了。其实我们学习中文或是英文这种自然语言也是如此, 母语从小到大一直学习和使用你就觉得亲切, 而第二第三语言要是接触少一些你 自然就会有不少心理障碍, 逻辑语言就更是了。

所以熟练的掌握极限的定义对于后续的学习是非常必要的。

下面是一些典型的Math 115A 前期的assignment(实轴上的拓扑)中可能会出现的典型题目。

Problem 1. Problem #1. Let $I$ be a closed interval and $J$ an open interval.
a) Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a convergent sequence with $x_{n} \in I$ show that $\lim _{n \rightarrow \infty} x_{n} \in I$.
b) Let $\left\{y_{n}\right\}_{n=1}^{\infty}$ be a convergent sequence with $y_{n} \in J .$ Show by example that it may be possible for $\lim _{n \rightarrow \infty} y_{n} \notin J$
Proof . (a) Let $I=[a, b] .$ Suppose for a contradiction that $x=\lim _{n \rightarrow \infty} x_{n} \notin I .$ Without loss of generality we may assume $x>b .$ Let $\varepsilon=x-b .$ By definition of the limit there is $N \in \mathbb{N}$ such that $n>N$ implies $\left|x_{n}-x\right|<\varepsilon,$ but this implies
$$
x_{n} \in(x-\varepsilon, x+\varepsilon)=(b, x+\varepsilon)
$$
which is disjoint from $I,$ a contradiction.
(b) Consider $\left\{\frac{1}{n+1}\right\}_{n-1}^{\infty} \subset(0,1),$ the limit is 0 as $n \rightarrow \infty$ which is not in (0,1) .
Problem 2. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a convergent sequence. For $k \in \mathbb{N}$ show that
$$
\lim _{n \rightarrow \infty} x_{n}^{k}=\left(\lim _{n \rightarrow \infty} x_{n}\right)^{k}
$$
Proof . Let $x=\lim _{n \rightarrow \infty} x_{n},$ we must show that $\lim _{n \rightarrow \infty} x_{n}^{k}=x^{k} .$ Given $\varepsilon>0,$ choose $N_{1} \in \mathbb{N}$ such that
$n>N_{1}$ implies
$$
\left|x_{n}-x\right|<\frac{\varepsilon}{k(|x|+1)^{k-1}}
$$
Since convergent sequences are bounded, we may choose $N_{2} \in \mathbb{N}$ such that $n>N_{2}$ implies $\left|x_{n}\right| \leq|x|+1$. Let $N=\max \left\{N_{1}, N_{2}\right\} .$ For $n>N$ we have
$$
\begin{aligned}
\left|x_{n}^{k}-x^{k}\right| &=\left|x_{n}-x\right|\left|x_{n}^{k-1}+x x_{n}^{k-2}+x^{2} x_{n}^{k-3}+\cdots+x^{k-1}\right| \\
& \leq\left|x_{n}-x\right|\left(\left|x_{n}\right|^{k-1}+|x|\left|x_{n}\right|^{k-2}+\cdots+|x|^{k-1}\right) \\
&\left.\leq \frac{\varepsilon}{k(|x|+1)^{k}}\left((|x|+1)^{k-1}+|x|(|x|+1)^{k-2}+\cdots+|x|^{k-1}\right)\right) \\
&<\frac{\varepsilon}{k(|x|+1)^{k}}\left(k(|x|+1)^{k}\right)<\varepsilon
\end{aligned}
$$
which gives the required result by definition.
Problem 3. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences.
a) If $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded and $\lim _{n \rightarrow \infty} b_{n}=0,$ then show $\left\{a_{n} b_{n}\right\}_{n=1}^{\infty}$ is convergent and $\lim _{n \rightarrow \infty} a_{n} b_{n}=0$.
b) Given an example where $\left\{a_{n}\right\}_{n=1}^{\infty}$ is unbounded and $\lim _{n \rightarrow \infty} b_{n}=0$ and $\left\{a_{n} b_{n}\right\}_{n=1}^{\infty}$ is divergent.
c) Give an example where $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded and $\lim _{n \rightarrow \infty} b_{n}$ exists and is $\neq 0$ and $\left\{a_{n} b_{n}\right\}_{n=1}^{\infty}$ is divergent.
Proof . (a) Let $M \in \mathbb{R}$ be such that $\left|a_{n}\right| \leq M .$ Given $\varepsilon>0,$ choose $N \in \mathbb{N}$ such that $n \geq N$ implies
$$
\left|b_{n}\right|<\frac{\varepsilon}{M}
$$
Then for $n \geq N$ we have
$$
\begin{array}{l}
\quad\left|a_{n} b_{n}\right| \leq\left|a_{n}\right|\left|b_{n}\right|<M \frac{\varepsilon}{M}<\varepsilon \\
\text { so } \lim _{n \rightarrow \infty} a_{n} b_{n}=0
\end{array}
$$
(b) Consider $a_{n}=n^{2}$ and $b_{n}=\frac{1}{n},$ then $a_{n} b_{n}=n \rightarrow \infty$ as $n \rightarrow \infty$
(c) Let $a_{n}=1$ if $n$ is even and -1 if $n$ is odd. Let $b_{n}=1 .$ Then $a_{n} b_{n}=a_{n}$ which is divergent.
Problem 4.

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be sequence with $\lim _{n \rightarrow \infty} x_{2 n}=\lim _{n \rightarrow \infty} x_{2 n-1}=x .$ Show $\lim _{n \rightarrow \infty} x_{n}=x$.

Proof . Let $\varepsilon>0 .$ By definition, there is $N_{1} \in \mathbb{N}$ such that $n>N_{1}$ implies $\left|x_{2 n}-x\right|<\varepsilon .$ Similarly there is $N_{2}$ such that $n>N_{2}$ implies $\left|x_{2 n-1}-x\right|<\varepsilon .$ Let $N=\max \left\{2 N_{1}, 2 N_{2}\right\}$ and clearly $n>N$ implies $\left|x_{n}-n\right|<\varepsilon$ (since $n$ is either even or odd). So $\lim _{n \rightarrow \infty} x_{n}=x$ as well.
Problem 5.

Recall, the Fibonacci sequence is defined by $f_{1}=f_{2}=1$ and $f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 3$.
a) Show that the sequence $x_{n}=\frac{f_{n+1}}{f_{n}}$ is well-defined and satisfies $x_{1}=1$ and $x_{n+1}=1+x_{n-1}^{-1}$.
b) Show that for $l \in \mathbb{N},$ the $x_{n}$ satisfy $1 \leq x_{1} \leq x_{3} \leq \ldots \leq x_{2 l+1} \leq x_{2 l} \leq x_{2 l-2} \leq \ldots \leq x_{2} \leq 2$.
c) Show that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent and determine $\lim _{n \rightarrow \infty} x_{n} .$ (Hint: Problem 4 is helpful).

Proof .

which is true for $\frac{1-\sqrt{5}}{2} \leq x_{2 i-1} \leq \frac{1+\sqrt{5}}{2}$.
Note that $x_{1}=1$ is between 0 and $\frac{1+\sqrt{5}}{2},$ so $x_{1} \leq x_{3} .$ More generally one can show that this relation is preserved under the recursive relation. Indeed
$$
\begin{aligned}
0 \leq x_{2 i-1} \leq \frac{1+\sqrt{5}}{2} & \Longrightarrow x_{2 i}=1+x_{2 i-1}^{-1} \geq 1+\frac{2}{1+\sqrt{5}}=\frac{1+\sqrt{5}}{2} \\
& \Longrightarrow x_{2 i+1}=1+\left(1+x_{2 i-1}^{-1}\right)^{-1} \leq 1+\frac{2}{1+\sqrt{5}}=\frac{1+\sqrt{5}}{2}
\end{aligned}
$$
This means $0 \leq x_{2 i-1} \leq \frac{1+\sqrt{5}}{2}$ for all $i$ and it follows from the previous paragraph that $x_{2 i-1} \leq$ $x_{2 i+1}$
The fourth item follows in a similar fashion: one shows that $x_{2 i} \geq \frac{1+\sqrt{5}}{2}$ is preserved under the recursive relation and that
$$
x_{2 i-2} \geq x_{2 i} \Longleftrightarrow x_{2 i-2} \geq 1+x_{2 i-2}^{-1} \Longleftrightarrow x \geq \frac{1+\sqrt{5}}{2} \text { or } x \leq \frac{1-\sqrt{5}}{2}
$$
Finally the fifth item follows from the above since
$$
x_{2 i-1} \leq \frac{1+\sqrt{5}}{2} \leq x_{2 i}
$$
Combining all these gives the desired inequalities.
(c) We use Problem 4 . By the recurrence relation we have that the odd-numbered terms satisfy
$$
x_{2 i+1}=1+x_{2 i}^{-1}=1+\left(1+x_{2 i-1}^{-1}\right)^{-1}
$$
Now by part b) the odd-numbered term is a monotonically increasing sequence bounded above by
2. So by the monotone convergence theorem the limit exists, and one can directly solve the above equation to get
$$
\lim _{n \rightarrow \infty} x_{2 n-1}=\frac{1+\sqrt{5}}{2}
$$
since by the previous part $x_{2 n+1} \geq 1$ for all $n .$ Similarly the even-numbered terms also have a limit, and a similar computation shows that this limit is also $\frac{1+\sqrt{5}}{2},$ so Problem 4 implies that
$$
\lim _{n \rightarrow \infty} x_{n}=\frac{1+\sqrt{5}}{2}
$$

Problem 6.

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence. Show that
$$
\limsup _{n \rightarrow \infty} x_{n}=-\liminf _{n \rightarrow \infty}\left(-x_{n}\right)
$$

Proof . Recall that
$$
\limsup _{n \rightarrow \infty}=\lim _{n \rightarrow \infty} \sup _{k>n} x_{k}
$$
Moreover we have
$$
\sup _{k>n} x_{k}=-\inf _{k>n}\left(-x_{k}\right)
$$
Combining these and noticing that the negative sign can be pulled out of the limit since the limit exists gives the result.
abstract algebra代写请认准UpriviateTA

real analysis代写, math 115A代写,实分析代写, 数学分析代写请认准UpriviateTA. UpriviateTA为您的留学生涯保驾护航。

更多内容请参阅另外一份Math115代写.