这是一次UCL伦敦大学学院椭圆方程MATH0090 Elliptic Partial Differential Equations课程的代写成功案例


这门课是一门本科生的复分析的入门课。最开始就是从椭圆方程的简单具体例子开始讲起,旨在作为二阶椭圆偏微分方程理论的介绍。椭圆方程在许多几何学领域发挥着重要作用。
线性椭圆方程的强大背景为理解其他课题提供了基础,如最小曲面和广义映射。
的基础,如最小表面、谐波图和广义相对论。该课程的中心是
围绕着线性理论,对非线性方程进行展望。椭圆方程的经典解和弱解都会被讨论,解决迪里切特问题的解的存在性和唯一性
Dirichlet问题的存在性和唯一性,并分析解决方案的规律性。这包括建立
最大原则,Schauder估计(和其他关于解决方案的估计)。最后,我们将
讨论De Giorgi-Nash-Moser理论,该理论可用于建立最小表面方程(非线性)的弱解的规则性。

椭圆方程MATH0090 Elliptic Partial Differential Equations
Problem 1. (Weyl’s Lemma)

Let ΩRn be a domain. If uL1(Ω) is weakly harmonic in Ω, then there exists a ˉuC(Ω) such that ˉu is classically harmonic and u=ˉu for a.e. xΩ.

注意Weyl’s Lemma对次调和函数是不成立的

Proof .

Step 1: The first step is to mollify u. Given σ>0, define Ωσ:=xΩd(x,Ω)>σ. Now define uσ:ΩσR by
uσ(x)=(ησu)(x)=Rnησ(xy)u(y)dy=Bσ(x)ησ(xy)u(y)dy.


We call uσ the σ th mollification of u. We claim that uσC(Ωσ).
Fix xΩσ, and 1in. Then if h is chosen small enough such that x+heiΩσ, we have
uσ(x+hei)uσ(x)h=1σnBσ(x)1h(η(x+heiyσ)η(xyσ))u(y)dy.

Since
Diησ(x)=σn+1Diη(xσ)

we have
1h(η(x+heiyσ)η(xyσ))1σDiη(xyσ)

uniformly on Bσ(x), and hence Diuσ(x) exists and for xΩσ,
Diuσ(x)=Bσ(x)Diησ(xy)u(y)dy

A similar argument shows that D(α)uσ(x) exists and for xΩσ,
D(α)uσ(x)=Bσ(x)D(α)ησ(xy)u(y)dy


for any multiindex α. Thus uσC(Ωσ).
Step 2: We now claim that uσu for a.e. xΩσ. Fix such a point xΩσ. Then using the fact that ησ has unit intgeral,
|uσ(x)u(x)|=|Bσ(x)ησ(xy)(u(y)u(x))dy| 1σnBσ(x)η(xyσ)|u(y)u(x)|dy CσnBσ(x)|u(y)u(x)|0,

by Lebesgue’s Differentiation Theorem.
Step 3: Next, we claim that uσ is classically harmonic in Ωσ. Write Δx to indicate that the differentiation is with respect to x in the Laplacian. Then
Δxuσ(x)=Δx(Bσ(x)ησ(xy)u(y)dy) =Bσ(x)Δx(ησ(xy))u(y)dy,

as ησ is smooth. But by the chain rule,
Δx(ησ(xy))=Δy(ησ(xy))

as the (1) ‘s cancel. But then
Bσ(x)Δy(ησ(xy))u(y)dy=0

since u is weakly harmonic and f(y):=ησ(xy)C2c(Ω).
Step 4: The next thing to prove are the following two statements about mollification. Let σ,τ>0. Define (uσ)τ(x)=ητuσ for τ>0, so (uσ)τ is defined in Ωσ+τ. Similarly we define (uτ)σ. We claim for all xΩσ+τ :

  1. $\left(u_\sigma\right)\tau(x)=u\sigma(x)$,
  2. (uσ)τ(x)=(uτ)σ(x). Observe for any xΩσ+τ,
    (uσ)τ(x)=Bτ(x)ητ(xy)uσ(y)dy=1τnBτ(x)η(xyτ)uσ(y)dy,

    and by the coarea formula (4) we have
    (uσ)τ(x)=1τn110Bτρ(x)η(xyτ)uσ(y)dydρ.

    Now recall that η is radial, and thus η(z)=η(|z|), and since on Bτρ(x), we have
    |xyτ|=ρ

we can write
(uσ)τ(x)=10nωnρn1η(ρ)(1nωn(τρ)n1Bτρ(x)uσ(y)dy)dρ,


and then applying Theorem (2.4).(1) to the harmonic function uσ we obtain
(uσ)τ(x)=uσ(x)10nωnρn1η(ρ)dρ.

Finally,
10nωnρn1η(ρ)dρ=10η(ρ)(Bρ(0)dS)dρ=B1(0)η(|y|)dy=1,

and thus we conclude (uσ)τ(x)=uσ(x).
To prove the second statement, let xΩσ+τ and observe we may take all our integrals to be over Ωσ+τ. We have
(uσ)τ(x)=(ητuσ)(x) =Ωσ+τητ(xy)uσ(y)dy =Ωσ+τητ(xy)Ωσ+τησ(yz)u(z)dzdy.

Now set w=xy+z. Then
(uσ)τ(x)=Ωσ+τητ(wz)Ωσ+τησ(xw)u(z)dwdz

which upon exchanging the order of integration (which is valid, as ησ and ητ are smooth and u integrable) is equal to (uτ)σ(x).

Step 5: We can now complete the proof. Fix some τ>0. We have shown that for a.e. xΩσ+τ we have (uτ)σ(x)=(uσ)τ(x)=uσ(x). Now let σ0. Thus for a.e. xΩτ, we have uτ(x)=u(x), with uτ smooth and classically harmonic. But τ was arbitrary; it follows there exists a smooth harmonic function ˉu defined on all of Ω such that for a.e. xΩ,u(x)=ˉu(x). This completes the proof.


椭圆方程MATH0090 Elliptic Partial Differential Equations代写请认准UpriviateTA

UprivateTA™为您的留学生涯保驾护航。

Recommended Texts
L. C. Evans, Partial differential equations D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order
Detailed Syllabus

  • Introduction: definitions and examples of elliptic PDEs, including some non-linear ones (e.g. minimal surfaces or harmonic maps).
  • Weak and strong maximum principle, and their consequences (uniqueness of solutions to the Dirichlet problem).
  • Review of Hölder spaces. Interior and boundary Schauder estimates.
  • Existence of a solution to the Dirichlet problem: continuity method, Perron’s method, barriers.
  • Interior and global regularity in Ck,a-spaces (higher order Schauder estimates).
  • Review of Sobolev spaces. Equations in divergence form: variational origin of the equations, weak solutions, existence and regularity theory in Wk,2-spaces (includes Lax-Milgram theorem, Fredholm alternative).
  • De Giorgi-Nash-Moser theory: motivations and statement, some ideas involved in the proof, some applications (e.g. to minimal surfaces).

Fourier analysis代写

微分几何代写

离散数学代写

Partial Differential Equations代写可以参考一份偏微分方程midterm答案解析

时间序列分析代写