Syllabus for MATH 2030: Matrix Theory and Linear Algebra I

Spring 2021

Course Description:

The purpose of this course is to provide students with a solid foundation in the basic concepts of matrix theory and linear algebra. Topics to be covered include:

vectors in Rn
, systems of linear equations, matrices, linear transformations, subspaces, determinants, eigenvalues and eigenvectors.
Instructor: Matt Hurshman, Email: [email protected], Office: Chase 226, Office
Hours: Wednesday 1-2, Friday 1-3. I can be reached by email to set up an appointment
outside of regular office hours.
Course Website:∼mhursh/teaching/math2030/
Lectures: Monday and Thursday 6:05-8:45 L

SC 234. We will take two 5 minute breaks
roughly every 50 minutes each lecture.

Required Text Book:

Stewart Venit, Wayne Bishop, Jason Brown, Elemantary Linear
Algebra, First Canadian Edition, ISBN: 9780176440763. We will cover sections 1.1 – 1.3,
2.1 – 2.3, 3.1 – 3.3, 3.5, 3.7, 4.1 – 4.4, 5.1 – 5.5, 7.1 – 7.3. Some additional material may be
covered at the instructor’s discretion.
Other Text Books: The topics covered in this course are a standard introduction to linear
algebra. Any text book (there are many available for free online) should suffice as a study
guide for the course though there may be some differences. For example, not many books will
cover the material in Chapter 1. If you choose to use another book, I’d recommend taking
comprehensive course notes to ensure you know the exact topics which you are responsible


• Assignments – 10% (Best 6 out of 7)
• Tests and Exam – 90% (Either 20% for each midterm and 50% for the exam or 20%
for the best midterm and 70% for the exam.)
Grades will be converted to letter grades as follows: A+ 90-100; A 85-89; A- 80-84; B+
75-79; B 70-74; B- 65-69; C+ 62-64; C 58-61; C- 55-57;D 50-54; F 0-49

Test/Exam Policies:

There will be two midterms held in class on May 30th and June 13th. The exam will
be held on the final day of class (June 23rd). Be sure to plan your term to include the
dates of the tests and the final exam. Conflicts with travel arrangements, jobs, etc. cannot
be accommodated. Calculators, textbooks, and notes are not allowed during tests and
examinations. Any cheating during the tests or exam will be dealt with severely.


Assignments must be handed in at the start of class on the assigned due date. Assignment
solutions must be given in detail. Show all steps you used to obtain your answer. Working
in groups is encouraged but each student must submit their own assignment with their
own solutions. The Mathematics Learning Centre in the Chase Building is open during the
summer and students are encouraged to seek assistance there if necessary.
Students with Disabilities: Students with disabilities are encouraged to register as quickly
as possible at the Student Accessibility Services if they want to receive academic accommodations. To do so please phone 494-2836, e-mail [email protected], drop in at the Killam G28,
or visit

Math 130A代写请认准UpriviateTA

黎曼曲面代写,数学代写Riemann surface请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

Fourier analysis代写



Partial Differential Equations代写可以参考一份偏微分方程midterm答案解析