## 初略的模型建立

$$A+B \longrightarrow P$$

$$v \propto \sigma\left(\frac{8 k T}{\pi \mu}\right)^{1 / 2}[A][B]$$

$$v \propto \sigma\left(\frac{8 k T}{\pi \mu}\right)^{1 / 2}[A][B] \exp \left(-\frac{E_{a}}{R T}\right)$$

$$k_{r} \propto \sigma\left(\frac{8 k T}{\pi \mu}\right)^{1 / 2} \exp \left(-\frac{E_{a}}{R T}\right)$$

$$k_{r} \propto P \sigma\left(\frac{8 k T}{\pi \mu}\right)^{1 / 2} \exp \left(-\frac{E_{a}}{R T}\right)$$

## 建立模型推导表达式

$$Z_{A B}=\sigma v_{\mathrm{rel}} \mathcal{N}{\mathcal{A}} \mathcal{N}{\mathcal{B}}$$

\begin{aligned} &\sigma=\pi d^{2}, \quad \text { where } d=\frac{1}{2}\left(d_{A}+d_{B}\right) \ &\mu=\frac{m_{A} m_{B}}{m_{A}+m_{B}} \end{aligned}

$$\frac{\mathrm{d}[A]}{\mathrm{d} t}=-\sigma(\varepsilon) v_{\mathrm{rel}} N_{A}[A][B]$$

## 动能分布

$$\frac{\mathrm{d}[A]}{\mathrm{d} t}=-\left[\int_{0}^{\infty} \sigma(\varepsilon) v_{\mathrm{rel}} f(\varepsilon) \mathrm{d} \varepsilon\right] N_{A}[A][B]$$

$$k_{r}=N_{A} \int_{0}^{\infty} \sigma(\varepsilon) v_{\mathrm{rel}} f(\varepsilon) \mathrm{d} \varepsilon$$
$$v_{\mathrm{rel}, A-B}=v_{\mathrm{rel}} \cos \theta=v_{\mathrm{rel}}\left(\frac{d^{2}-a^{2}}{d^{2}}\right)^{2}$$

$$\varepsilon_{A-B}=\varepsilon \times \frac{d^{2}+a^{2}}{d^{2}}$$

$$a_{\max }^{2}=\left(1-\frac{\varepsilon_{a}}{\varepsilon}\right) d^{2}$$

$$\sigma(\varepsilon)= \begin{cases}0 & , \varepsilon \leq \varepsilon_{a} \ \left(1-\frac{\varepsilon_{a}}{\varepsilon}\right) \sigma & , \varepsilon>\varepsilon_{a}\end{cases}$$

$$k_{r}=\sigma N_{A} v_{\text {rel }} \exp \left(-\frac{E_{a}}{R T}\right)$$

$$k_{r}=A \exp \left(-\frac{E_{a}}{R T}\right)$$

$$k_{r}=P \sigma N_{A} v_{\text {rel }} \exp \left(-\frac{E_{a}}{R T}\right)$$

$$P=\frac{A_{\text {experimental }}}{A_{\text {calculated }}}$$

real analysis代写analysis 2, analysis 3请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。