泛函分析代写
Problem 1.

(a) Let $\Omega \subset \mathbb{R}^{n}$ be open, $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}{0}^{n}$ a multi-index and $|\alpha|=\sum{k=1}^{n} \alpha_{k}$. Let
$u \in L_{\text {loc }}^{1}(\Omega) .$ Given $1

0$, but $u \notin W^{1,1}(\mathbb{R})$, i. e. $u$ does not have a weak derivative in $L^{1}(\mathbb{R})$.

Proof .

(a) Let $u \in L_{\text {loc }}^{1}(\Omega)$. Given $1<p \leq \infty$, let $1 \leq q<\infty$ such that $\frac{1}{p}+\frac{1}{q}=1$. Suppose $D^{\alpha} u$ exists as weak derivative in $L^{p}(\Omega)$. Let $\varphi \in C_{c}^{\infty}(\Omega)$ be arbitrary. Then,
$$
\left|\int_{\Omega} u D^{\alpha} \varphi d x\right|=\left|(-1)^{|\alpha|} \int_{\Omega}\left(D^{\alpha} u\right) \varphi d x\right| \leq\left|D^{\alpha} u\right|_{L^{p}(\Omega)}|\varphi|_{L^{q}(\Omega)}
$$
by Hölder’s inequality which proves the first claim with constant $C=\left|D^{\alpha} u\right|_{L^{p}(\Omega)}$. Conversely, suppose
$$
\forall \varphi \in C_{c}^{\infty}(\Omega): \quad\left|\int_{\Omega} u D^{\alpha} \varphi d x\right| \leq C|\varphi|_{L^{q}(\Omega)}
$$
Then, since $C_{c}^{\infty}(\Omega)$ is dense in $L^{q}(\Omega)$ for $q<\infty$, the map
$$
f: \varphi \mapsto(-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \varphi d x
$$
defines a continuous linear functional $f \in\left(L^{q}(\Omega)\right)^{}$. Since $\left(L^{q}(\Omega)\right)^{}$ for $1 \leq q<\infty$ is isometrically isomorphic to $L^{p}(\Omega)$, there exists $g \in L^{p}(\Omega)$ such that
$$
\forall \varphi \in L^{q}(\Omega): \quad f(\varphi)=\int_{\Omega} g \varphi d x
$$
By definition of $f$ it follows that $g \in L^{p}(\Omega)$ is the weak derivative $D^{\alpha} u$ of $u$.
(b) Let $u=\chi_{j 0,[1}$ and $\varphi \in C_{c}^{\infty}(\mathbb{R})$. Then
$$
\left|\int_{\mathbb{R}} u \varphi^{\prime} d x\right|=\left|\int_{0}^{1} \varphi^{\prime} d x\right|=|\varphi(1)-\varphi(0)| \leq 2|\varphi|_{L^{\infty}(\mathbb{R})} .
$$
The function $u$ restricted to $\mathbb{R} \backslash{0,1}$ is differentiable with vanishing derivative. In particular, if $u$ had a weak derivative $u^{\prime} \in L_{\text {loc }}^{1}(\mathbb{R})$, then $u^{\prime}=0$ almost everywhere. A contradiction arises for test functions $\varphi \in C_{c}^{\infty}(\mathbb{R})$ with $\varphi(0) \neq \varphi(1)$ via
$$
0=\int_{\mathbb{R}} u^{\prime} \varphi d x=-\int_{\mathbb{R}} u \varphi^{\prime} d x=-\int_{0}^{1} \varphi^{\prime} d x=\varphi(0)-\varphi(1) .
$$

Problem 2.

2.5. Green’s function for the half-space Show that Green’s function for the upper half-space, i. e. the unbounded domain $\mathbb{R}{+}^{n}:=\left{\left(x{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right} \subset \mathbb{R}^{n}$
exists by computing $G(x, y)$ explicitly.

Proof .

Given $x=\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \in \mathbb{R}{+}^{n}$, let $\bar{x}=\left(x{1}, \ldots, x_{n-1},-x_{n}\right)$ denote its reflection in
the plane $\partial \mathbb{R}{+}^{n} .$ Let $\Phi: \mathbb{R}^{n} \backslash{0} \rightarrow \mathbb{R}$ be the fundamental solution of Laplace’s equation as given on the problem set. Then the function $$ \phi^{x}(y):=\Phi(y-\bar{x})=\Phi\left(y{1}-x_{1}, \ldots, y_{n-1}-x_{n-1}, y_{n}+x_{n}\right)
$$
satisfies
$$
\left{\begin{aligned}
\Delta \phi^{x} &=0 & & \text { in } \mathbb{R}{+}^{n} \ \phi^{x}(y) &=\Phi(y-x) & & \text { for } y \in \partial \mathbb{R}{+}^{n}
\end{aligned}\right.
$$
because $y-\bar{x} \neq 0$ for every $y \in \mathbb{R}{+}^{n}$ and since by symmetry of $\Phi$ $$ \forall y \in \partial \mathbb{R}{+}^{n}: \quad \Phi(y-x)=\Phi(\overline{y-x})=\Phi(\bar{y}-\bar{x})=\Phi(y-\bar{x})=\phi^{x}(y)
$$
Hence, Green’s function for the upper half-space is
$$
\begin{aligned}
G(x, y) &=\Phi(y-x)-\phi^{x}(y)=\Phi(y-x)-\Phi(y-\bar{x}) \
&=\left{\begin{array}{ll}
-\frac{1}{2 \pi}(\log |y-x|-\log |y-\bar{x}|), & (n=2) \
\frac{1}{n(n-2)\left|B_{1}\right|}\left(|y-x|^{2-n}-|y-\bar{x}|^{2-n}\right), & (n \neq 2)
\end{array}\right.
\end{aligned}
$$
Remark. Since the domain $\mathbb{R}{+}^{n}$ is unbounded, the representation formula (as given on the problem set) for solutions of the equation $-\Delta u=f$ in $\mathbb{R}{+}^{n}$ with boundary data $\left.u\right|{\partial \mathbb{R}{+}^{n}}=g$ has to be checked separately.

Problem 3.

Let $1 \leq p \leq \infty$. Consider the open set $\Omega=]-1,1\left[{ }^{2} \backslash([0,1[\times{0})\right.$.
(a) Prove that there does not exist an extension operator $E: W^{1, p}(\Omega) \rightarrow W^{1, p}\left(\mathbb{R}^{2}\right)$.
(b) Where and why does the argument that you have seen in class fail in this situation?

Proof .

(a) Let $\Omega=]-1,1\left[^{2} \backslash([0,1[\times{0})\right.$ and let $u: \Omega \rightarrow \mathbb{R}$ be given by
$$
u\left(x_{1}, x_{2}\right):=\left{\begin{array}{ll}
x_{1} & \text { if } x_{1}>0 \text { and } x_{2}>0 \
0 & \text { otherwise. }
\end{array}\right.
$$
As shown in Problem $5.1, u \in W^{1, \infty}(\Omega) .$ Since $\Omega$ is bounded, $u \in W^{1, p}(\Omega)$ for any $1 \leq p \leq \infty$. Suppose, there exists an extension operator $E: W^{1, p}(\Omega) \rightarrow W^{1, p}\left(\mathbb{R}^{2}\right)$ such that $\left.(E u)\right|{\Omega}=u$ almost everywhere in $\Omega .$ Let $\left.Q:=\right]-1,1\left[^{2}\right.$ and $v:=\left.(E u)\right|{Q}$. Then $E u \in W^{1, p}\left(\mathbb{R}^{n}\right)$ implies $v \in W^{1, p}(Q)$. Consequently, as shown in Problem 5.5, $\left(x_{2} \mapsto v\left(x_{1}, x_{2}\right)\right) \in W^{1, p}(]-1,[)1$ for almost every $\left.x_{1} \in\right]-1,1[.$ Moreover, since $[0,1[\times{0}$
has measure zero, $v\left(x_{1}, x_{2}\right)=u\left(x_{1}, x_{2}\right)$ for almost every $\left(x_{1}, x_{2}\right) \in Q$.

Hence, there exists some fixed $\left.x_{1} \in\right] \frac{1}{2}, 1\left[\right.$ such that $\left(g: x_{2} \mapsto v\left(x_{1}, x_{2}\right)\right) \in W^{1, p}(]-1,[)1$ and such that $g\left(x_{2}\right)=u\left(x_{1}, x_{2}\right)$ for almost every $\left.x_{2} \in\right]-1,1[.$ By Sobolev’s embedding in dimension one, $g$ and hence $x_{2} \mapsto u\left(x_{1}, x_{2}\right)$ has a representative in $C^{0}(]-1,[)1$. However, since we chose $x_{1}>\frac{1}{2}$, this contradicts discontinuity of
$$
x_{2} \mapsto u\left(x_{1}, x_{2}\right)=\left{\begin{array}{ll}
x_{1} & \text { for } x_{2}>0 \
0 & \text { for } x_{2}<0
\end{array}\right.
$$
(b) The issue is that $\Omega$ is not a topological manifold with boundary. In particular, every point $x \in[0,1] \times{0}$ belongs to the topological boundary of $\Omega$ but doesn’t admit an open neighbourhood $U$ such that $U \cap \Omega$ is even only homeomorphic to $Q_{+}$ (compare with the definition of open set with $C^{k}$ boundary given in class).

Problem 4.

As a warm-up to the following problem, please have a look at the proof for the Sobolev-Gagliardo-Nirenberg inequality
Adapt that argument to show that there is an embedding $H^{1}\left(\mathbb{R}^{2}\right) \hookrightarrow L^{4}\left(\mathbb{R}^{2}\right)$ and prove the estimate
$$
\forall u \in H^{1}\left(\mathbb{R}^{2}\right): \quad|u|_{L^{4}\left(\mathbb{R}^{2}\right)}^{4} \leq 4|u|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}|\nabla u|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}
$$

Proof .

Sobolev’s embedding (in the case $n=2=p$ ) states that the space $H^{1}\left(\mathbb{R}^{2}\right)$ embeds into $L^{q}\left(\mathbb{R}^{2}\right)$ for any $2 \leq q<\infty$, in particular for $q=4$. The Sobolev inequality states
$$
\exists C<\infty \quad \forall u \in H^{1}\left(\mathbb{R}^{2}\right): \quad|u|_{L^{4}\left(\mathbb{R}^{2}\right)} \leq C|u|_{H^{1}\left(\mathbb{R}^{n}\right)}
$$
In this special case, we claim that the following inequality also holds.
$$
\forall u \in H^{1}\left(\mathbb{R}^{2}\right): \quad|u|_{L^{4}\left(\mathbb{R}^{2}\right)}^{4} \leq 4|u|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}|\nabla u|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}
$$
Since $C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$ is dense in $H^{1}\left(\mathbb{R}^{2}\right)$, it suffices to prove the inequality for $u \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$. Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$ and $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Then,
$$
\begin{aligned}
\left|u^{2}\left(x_{1}, x_{2}\right)\right| &=\left|\int_{-\infty}^{x_{1}} \frac{\partial u^{2}}{\partial x_{1}}\left(s, x_{2}\right) d s\right|=\left|\int_{-\infty}^{x_{1}} 2 u\left(s, x_{2}\right) \frac{\partial u}{\partial x_{1}}\left(s, x_{2}\right) d s\right| \
& \leq 2 \int_{\mathbb{R}}\left|u\left(s, x_{2}\right) | \nabla u\left(s, x_{2}\right)\right| d s
\end{aligned}
$$

Analogously,
$$
\left|u^{2}\left(x_{1}, x_{2}\right)\right| \leq 2 \int_{\mathbb{R}}\left|u\left(x_{1}, t\right) | \nabla u\left(x_{1}, t\right)\right| d t
$$
Hence, by Fubini’s theorem and the Cauchy-Schwarz inequality
$$
\begin{aligned}
|u|_{L^{4}\left(\mathbb{R}^{2}\right)}^{4} &=\int_{\mathbb{R}} \int_{\mathbb{R}}\left|u\left(x_{1}, x_{2}\right)\right|^{4} d x_{1} d x_{2}=\int_{\mathbb{R}} \int_{\mathbb{R}}\left|u^{2}\left(x_{1}, x_{2}\right) | u^{2}\left(x_{1}, x_{2}\right)\right| d x_{1} d x_{2} \
& \leq 2 \int_{\mathbb{R}}\left(\int_{\mathbb{R}}\left|u\left(s, x_{2}\right) | \nabla u\left(s, x_{2}\right)\right| d s\right) \int_{\mathbb{R}}\left|u^{2}\left(x_{1}, x_{2}\right)\right| d x_{1} d x_{2} \
& \leq 4 \int_{\mathbb{R}}\left(\int_{\mathbb{R}}\left|u\left(s, x_{2}\right) | \nabla u\left(s, x_{2}\right)\right| d s\right) d x_{2} \int_{\mathbb{R}}\left(\int_{\mathbb{R}}\left|u\left(x_{1}, t\right) | \nabla u\left(x_{1}, t\right)\right| d t\right) d x_{1} \
&=4\left(\int_{\mathbb{R}^{2}}|u||\nabla u| d x\right)^{2} \leq 4|u|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}|\nabla u|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}
\end{aligned}
$$

泛函分析代写认准UpriviateTA

Functional Analysis II Spring 2021

LecturerProf. Dr. Alessandro CarlottoCourse AssistantRiccardo CaniatoTeaching AssistantsFilippo GaiaBian WuLecturesMon10-12 / HG G 5 – Livestream
Thu14-16/ HG G 5 – LivestreamExercise classesMon9-10Office hoursMon16-17.30First lecture22.02.2021Course Catalogue401-3462-00L Functional Analysis II

Prerequisites

Deep understanding of the topics covered in the course Functional Analysis I and a solid background in measure theory, Lebesgue integration and L^pLp spaces.

Content

Sobolev spaces; weak solutions of elliptic boundary value problems; basic results in elliptic regularity theory (including Schauder estimates); maximum principles.

Literature

Primary references

Michael Struwe. Funktionalanalysis I und II. Lecture notes, ETH Zürich, 2019/20.

Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.

Luigi Ambrosio, Alessandro Carlotto, Annalisa Massaccesi. Lectures on elliptic partial differential equations. Springer – Edizioni della Normale, Pisa, 2018.

Extra references

David Gilbarg, Neil Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001.

Qing Han, Fanghua Lin. Elliptic partial differential equations. Second edition. Courant Lecture Notes in Mathematics, 1. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011.

Michael Taylor. Partial differential equations I. Basic theory. Second edition. Applied Mathematical Sciences, 115. Springer, New York, 2011.

Lars Hörmander. The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Classics in Mathematics. Springer-Verlag, Berlin, 2003.

Diary of the lectures

The live streaming of the lectures is available here. After each lecture, the recording is published here.

For further information, check the following information about lecture recording.

DateContentNotesReferencesExtras
122.02.Introduction of the course. A model problem: the elastic membrane with fixed boundary. The Euler-Lagrange equation associated to a functional. A general roadmap to elliptic regularity.Notes – L01
225.02.Distributional and weak derivatives, examples and basic facts. Definition of Sobolev spaces. The Poincaré inequality. Completeness, separability and reflexivity.Notes – L02Struwe: section 7.2Brezis: section 9.1
301.03.The notion of weak solution for elliptic problems with Dirichlet boundary conditions and an existence result via Riesz theorem.Absolute continuity of functions in W^{1,p}(I)W1,p(I), weak vs. pointwise derivative.Notes – L03Struwe: section 7.1Brezis: section 8.1 and 8.3
Absolute continuity of functions in W^{1,p}(I)W1,p(I), weak vs. pointwise derivative.Struwe: section 7.3 till Satz 7.3.2Brezis: section 8.2 till Proposition 8.3
404.03.Three equivalent characterisations of W^{1,p}(I)W1,p(I) for p>1p>1. The Sobolev extension operator. Density of test functions in W^{1,p}(I)W1,p(I) for 1\leq p<\infty1≤p<∞, special cases and related comments.Notes – L04Struwe: section 7.3 till Satz 7.3.5Brezis: section 8.2 till Theorem 8.7
508.03.The one-dimensional Sobolev embedding theorem. The “undergrad student dream” corollary. The product rule and W^{1,p}(I)W1,p(I) as a Banach algebra.Notes – L05Struwe: section 7.3 (last part)Brezis: section 8.2 (last part)
611.03.Discussion of some examples of second-order ODEs with either Dirichlet or Neumann boundary conditions.Notes – L06Struwe: section 7.4Brezis: section 8.4
Sobolev functions of N variables: A criterion for the coincidence of pointwise and weak derivative (null capacity).Struwe: section 8.1Brezis: section 9.1
715.03.Examples of singular functions in W^{1,p}W1,p. The Meyers-Serrin approximation theorem, comments on the boundary behaviour. Equivalent characterisations of W^{1,p}W1,p for 1 < p\le\infty1<p≤∞.Notes – L07Struwe: section 8.2 and 8.3 till Korollar 8.3.1Brezis: section 9.1 till Proposition 9.4
818.03.Lipschitz versus W^{1,\infty}W1,∞. Calculus rules for Sobolev functions: sums, products and compositions (chain rule).Notes – L08Struwe: section 8.3 (last part)Brezis: section 9.1 (last part)
922.03.Extension operators for W^{1,p}(\Omega)W1,p(Ω) for \OmegaΩ a relatively compact domain of class C^1C1. Two approximation theorems for W^{1,p}W1,p functions, on bounded and unbounded domains.Notes – L09Struwe: section 8.4 till Satz 8.4.2Brezis: section 9.2
1025.03.Imposing boundary values for elliptic problems: trace operators and their properties. The canonical splitting of H^1(\Omega)H1(Ω); two equivalent characterisations of H^1_0(\Omega)H01​(Ω).Notes – L10Struwe section 8.4 (last part)Brezis: complements to chapter 9
1129.03.A panorama on the Sobolev embedding theorems. The Sobolev-Gagliardo-Nirenberg inequality, link with the isoperimetric inequality in \R^nRn. The Sobolev embedding theorem for p< np<n.Notes – L11Struwe: section 8.6Brezis: section 9.3Isoperimetric inequalityCo-area formula
1201.04.The easy Sobolev embedding theorems for W^{1,n}(\Omega)W1,n(Ω), comments on BMO(\Omega)BMO(Ω) and exponential integrability.Notes – L12Struwe: section 8.6.1
Review on spaces of Hölder-continuous functions, completeness; the embedding C^{0,\alpha}\subset C^{0,\beta}C0,αC0,β is compact for \alpha>\betaα>β.
1312.04.Campanato spaces and integral characterisation of Hölder continuity. The Poincaré-Wirtinger inequality. The Sobolev embedding for p>np>n and associated compactness results.Notes – L13Struwe: section 8.6.2Brezis: section 9.3Domains of type A
1415.04.Pointwise differentiability of functions in W^{1,p}W1,p for p>np>n.Notes – L14Struwe: section 8.6.3Nowhere differentiable Sobolev functions
Higher-order Sobolev embedding theorems and their applications to regularity of weak solutions.Struwe: section 8.6.4
1519.04.Interior regularity for solutions of the Poisson equation: H^1H1 and formal H^2H2 estimates, and rigorous counterpart via Nirenberg’s method (difference quotients).Notes – L15Struwe: section 9.1 and section 9.2Brezis: section 9.5 and section 9.6
1622.04.Higher Sobolev estimates for weak solutions of the Poisson equation via an inductive scheme.Notes – L16Struwe: section 9.2Brezis: section 9.6
The general notions of ellipticity for operators in divergence form, and corresponding H^{k+2}Hk+2 interior estimates.Struwe: section 9.4.4Brezis: section 9.5 and section 9.6
1726.04.Sobolev estimates and boundary regularity for weak solutions of the Poisson equation on a half-space. The case of curved boundary: flattening via diffeomorphisms and the modified equation.Notes – L17Struwe: section 9.3Brezis: section 9.6
1829.04.Transformation of functionals and operators under diffeomorphisms, the Laplace-Beltrami operator. Sobolev estimates and boundary regularity for weak solutions of elliptic equations.Notes – L18Struwe: section 9.4.1 and section 9.4.2Brezis: section 9.6
1903.05.Global H^{k+2}Hk+2 estimates for weak solutions of elliptic partial differential equations.Notes – L19Struwe: section 9.4.3 and section 9.4.4Brezis: section 9.6A min-max characterization for the Dirichlet eigevalues of the laplacian
The Dirichlet spectrum of the Laplace operator and the min-max characterization of its eigenvalues.Struwe: section 9.5Brezis: section 9.8
2006.05.The Weyl law for the Laplacian. Can one hear the shape of a drum?Notes – L20Notes in the extrasWeyl law for the Laplacian
Schauder theory: basic heuristics and motivations.Struwe: section 10.1
2110.05.Campanato estimates for solutions of homogeneous elliptic problems with constant coefficients (both in the interior and in the boundary case).Notes – L21Struwe: section 10.2 till Lemma 10.2.1
2217.05.Estimates for solutions of inhomogeneous problems (with constant coefficients).Notes – L22Struwe: section 10.2 (last part)
Morrey spaces and their equivalence to Campanato spaces for \nu< nν<n.Struwe: section 10.3
2320.05.Local C^{2,\alpha}C2,α Schauder estimates (interior and boundary cases). Global C^{2,\alpha}C2,α Schauder estimates. Related results: elliptic problems on compact Riemannian manifolds; operators in non-divergence form.Notes – L23Struwe: section 10.4

Final exam

The final assessment will be an oral exam lasting 30 minutes. The rules for the exam are available here. Some useful advice to prepare for the exam can be found here. If you wish to self-check your preparation, here you can find some sample questions. The dates and the modality for the final exam will be provided as soon as possible on this page.

Forum

In order to easily interact, we set up a forum for our course at the link Functional Analysis II (Spring 2021) – Forum. You have to sign up with your ETH credentials. There you find several topics where you can ask questions and discuss about the lectures, the problem sets, the exam, etc. Use it!

Exercise classes

Please register and enroll for a teaching assistant in myStudies. The enrollment is needed to attend the exercise class and to hand in your homework. Due to the current measures concerning the undergoing COVID-19 pandemic, all the exercise classes are held online. Below you find the link to the Zoom meetings of each exercise class (accessible with the password we sent you by email).

AssistantOnline room
Filippo GaiaETH Zoom
Bian WuETH Zoom

Here is the diary of the exercise classes. The online exercise classes are recorded, the videos are accessible at the links below (with the password that we sent you by email) and the notes are available in polybox – Functional Analysis II (with the same password).

DateContentRecordings
122.02.General information about the exercise classes. Review on the direct method of calculus of variations. Examples of applications (in particular, discussion about the fourth problem given in the winter session exam).Filippo Gaia / Bian Wu
201.03.Review about distributional derivatives, weak derivatives and Sobolev spaces. Some examples involving the computation of distributional derivatives.Filippo Gaia / Bian Wu
308.03.A review on harmonic functions: mean value property, Liouville theorem and Harnack inequality.Filippo Gaia / Bian Wu
415.03.Some existence and regularity results for second order linear ODEs in divergence form. The Cantor function: pointwise derivative a.e. vs distributional derivative.Filippo Gaia / Bian Wu
522.03.Discussion of some exercises given in the online quiz. In particular, solution of problems 4.8, 4.9, 4.12 and 4.15.Filippo Gaia / Bian Wu
629.03.Non-existence of trace operators in L^pLp (problem 5.4). The weak gradient of the positive and the negative part of a Sobolev function (problem 5.6).Filippo Gaia / Bian Wu
712.04.Review on Sobolev embedding theorems. Non-compactness of the embedding W^{1,p}(\mathbb{R}^n)\hookrightarrow L^p(\mathbb{R}^n)W1,p(Rn)↪Lp(Rn), for any p\in[1,+\infty]p∈[1,+∞] (problem 6.4). Compactness of the embedding W_0^{1,p}(\Omega)\hookrightarrow L^p(\Omega)W01,p​(Ω)↪Lp(Ω), for every open set \Omega\subset\mathbb{R}^nΩ⊂Rn with finite measure having C^1C1 boundary and for any p\in(1,n]p∈(1,n] (problem 6.5).Filippo Gaia / Bian Wu
819.04.Relation between H_0^1(\Omega)H01​(Ω) and functions in H^1(\mathbb{R}^n)H1(Rn) vanishing on \mathbb{R}^n\smallsetminus\OmegaRn∖Ω, depending on the regularity of \partial\Omega∂Ω (problem 6.2). Existence of nowhere differentiable functions in W^{1,p}(\Omega)W1,p(Ω), for n\ge 2n≥2 and p\in[1,n]p∈[1,n].Filippo Gaia / Bian Wu
926.04.Review about higher order Sobolev embedding theorems and discussion about the case W^{n,1}\hookrightarrow L^{\infty}Wn,1↪L∞, through the solution of problem 7.4. Different Poincarè inequalities, comments on problem 7.5.Filippo Gaia / Bian Wu
1003.05.Rieview of some boundary regularity results for uniformly elliptic operators and discussion of problems 9.2 and 9.3.Filippo Gaia / Bian Wu
1110.05.Uniform ellipticity and monotonicity of the eigenvalues of the Laplacian with respect to the domain (discussion about problems 10.4 and 10.5). Explicit computation of the Dirichlet spectrum of the Laplacian on rectangles (problem 10.10).Filippo Gaia / Bian Wu
1217.05.Wrap up session about Schauder estimates and discussion about problem 11.1.Filippo Gaia / Bian Wu

Problem sets

Every Thursday, at 4pm, a new problem set is uploaded here. You have seven days to solve the problems and hand in your solutions via the platform SAMUpTool (the precise deadline is the following Thursday, no later than 8pm). Your work will be carefully graded and given back to you after a few days. During exercise classes on Monday some of the problems are discussed. Hints for all problems of any given problem set will be posted on Monday evenings.

Every problem is marked by one of the following symbols.Computation   Get your hands dirty and calculate.Bookkeeping   Apply what you learn in basic situations.Comprehension   Construct examples and give full proofs.Previous exam   Exercise given in an old exam.Hard problem   Challenging problems are denoted by one up to three diamonds. It is recommended that you start working on these problems only after you have reviewed the weekly material and carefully solved all other exercises in the assignment.

Assignment dateDue dateProblem setSolution
Thu 25.02.Thu 04.03.Problem set 1 – HintsSolutions 1
Thu 04.03.Thu 11.03.Problem set 2 – HintsSolutions 2
Thu 11.03.Thu 18.03.Problem set 3 – HintsSolutions 3
Thu 18.03.Thu 25.03.Problem set 4 – Online quizSolutions 4
Thu 25.03.Thu 01.04.Problem set 5 – HintsSolutions 5
Thu 01.04.Thu 15.04.Problem set 6 – HintsSolutions 6
Thu 15.04.Thu 22.04.Problem set 7 – HintsSolutions 7
Thu 22.04.Thu 29.04.Problem set 8 – Online quizSolutions 8
Thu 29.04.Thu 06.05.Problem set 9 – HintsSolutions 9
Thu 06.05.Thu 13.05.Problem set 10 – Online quizSolutions 10
Thu 13.05.Thu 27.05.Problem set 11 – Hints

Office hours

You are free to come and ask questions. The office hours are held via Zoom. The schedule is as follows (up to possible short-term changes, please check for updates).

DateTimeLocationAssistant
Mon 01.03.16-17.30ETH ZoomRiccardo Caniato
Mon 08.03.16-17.30ETH ZoomFilippo Gaia
Mon 15.03.16-17.30ETH ZoomBian Wu
Mon 22.03.16-17.30ETH ZoomRiccardo Caniato
Mon 29.03.16-17.30ETH ZoomFilippo Gaia
Mon 12.04.16-17.30ETH ZoomBian Wu
Wed 21.04.16-17.30ETH ZoomRiccardo Caniato
Mon 26.04.16-17.30ETH ZoomFilippo Gaia
Mon 03.05.16-17.30ETH ZoomBian Wu
Mon 10.05.16-17.30ETH ZoomRiccardo Caniato
Mon 17.05.16-17.30ETH ZoomFilippo Gaia