这是一份University of Toronto的动力系统limit cycle画图案例。我们这次的客户在研究的过程中需要使用matlab或者python画Hopf bifurcation的limit cycle,但是她并不熟悉这些软件的使用,她找到了我们并且在我们老师的帮助下成功完成了极限环的绘制。
多伦多大学的这动力系统l课属于研究型课程,画图project考察的内容主要是数学计算的基本功和常规数学软件matlab和python的编码你能力和基本使用方法
客户在我们的帮助下取得了理想的成绩。
在分析非线性系统时 $x y$-plane,一般会侧重于寻找临界点并分析系统的轨迹在
每个临界点附近的形态。这让我们对其他轨迹(至少接近临界点的
轨迹)的信息有了一些把握。
另一个可能影响轨迹形态的因素是,如果其中一条轨迹描绘出闭合曲线 $C$. 如果发生这种
情况,相关的解 $\mathbf{x}(t)$ 将在几何上通过一个绕曲线旋转的点来实现 $C$ 有一定时期 $T$. 即解向
量
$\mathbf{x}(t)=(x(t), y(t))$
将是一对具有周期的周期函数 $T$ :
$$
x(t+T)=x(t), \quad y(t+T)=y(t) \quad \text { for all } t
$$
如果有这样一条闭合曲线,附近的轨迹形如 $C$. 可能性如下图。附近的轨迹可以螺旋趋近于 $C$ ,他们可以螺旋离开 $C$ ,或者它们本身可以是闭合曲线。如果后一种情况不成立一-换句话说,如果 $C$ 是一条孤立的闭合曲线一一那么 $\mathrm{C}$ 称为极限环:稳定、不稳定或半稳定,取决于附 近的曲线是否螺旋向 $C ,$ 远离 $C$ ,或两者。
我们这次的客户在研究的过程中需要使用matlab或者python画Hopf bifurcation的limit cycle,但是她并不熟悉这些软件的使用,她找到了我们并且在我们老师的帮助下成功完成了极限环的绘制。
To give an example to demonstrate the bifurcation of two limit cycles, we take $\rho=1.397661 \cdots$, which gives $A=\bar{A}=0.208536 \cdots, C=0.5$, and $B=B_{h}=$ $0.132553 \cdots$, resulting in $v_{0}=v_{1}=0$ and $v_{2}=-0.000222 \cdots<0$, as expected. Then, we perturb the parameters $A$ and $B$ such that $v_{1}>0, v_{0}<0$ and $\left|v_{0}\right| \ll v_{1} \ll$ $\left|v_{2}\right|$, and so two limit cycles can be obtained. More precisely, let $A=0.208536+\varepsilon_{1}$ and $B=B_{h}+\varepsilon_{2}$, where $\varepsilon_{1}=10^{-3}$ and $\varepsilon_{2}=-7 \times 10^{-6}$, which yield $A=$ $0.209536, \quad B=0.132444$ and
$$
v_{0} \mu=-0.731036 \times 10^{-6}, \quad v_{1}=0.293971 \times 10^{-4}, \quad v_{2}=-0.229863 \times 10^{-3}
$$
Note that $\varepsilon_{2}<0$ again implies that $B$ is decreasing to pass the Hopf critical point $\boldsymbol{B}{\boldsymbol{h}}$ since $v{0} \approx-0.672163<0$. Thus, the truncated normal form equation $v_{0} \mu+v_{1} r^{2}+$ $v_{2} r^{4}=0$ has two real roots: $r_{1} \approx 0.1839$ and $r_{2} \approx 0.3067$, which approximate the amplitudes of the two limit cycles. Since $v_{2}<0$, the outer limit cycle is stable while the inner one is unstable, and the equilibrium solution at this critical point is a stable focus.
The simulation, shown in Fig. 5, takes the exact parameter values:
$$
A=0.2095365226, \quad C=0.5, \quad D=B=0.1324446775 \text {. }
$$
The simulated phase portrait is shown in Fig. 5a where the stable (the larger one) and unstable (the smaller one) limit cycles are denoted by the red and blue curves, respectively. Analytic predictions based on the normal form are also shown in Fig. 5a as the green curves. It indeed indicates a good agreement between the simulations and the analytic predictions. Figure $5 \mathrm{~b}$ depicts the time history of the stable (outer) limit cycle. Note that the simulation for the unstable limit cycle (or the unstable periodic motion) is obtained by using a negative time step in a fourth-order Runge-Kutta integration scheme.
客户在找到我们之前自己做了一些尝试和计算,遇到了困难然后在我们老师的帮助下解决了问题并且学习了方法。