0

For $d \geq 2$, let
$$
f_{d}(t)=\frac{d-1}{d} \cdot t^{(d-1) / d}+\frac{1}{d} \cdot t^{-1 / d}, \quad t \geq 1
$$
Show that $f_{d}^{\prime}(t) \leq(d-1)^{2} / d^{2}$ for $t \geq 1$. Conclude that
$$
f_{d}(t)-1 \leq\left(\frac{d-1}{d}\right)^{2}(t-1), \quad t \geq 1 .
$$

更改状态以发布