0

Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuous, and suppose $f$ is differentiable at $d$ distinct reals $r_{1}, \ldots, r_{d} .$ Show that $r_{1}, r_{2}, \ldots, r_{d}$ are roots of $f$ iff $f(x)=$ $\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{d}\right) g(x)$ for some continuous function $g: \mathbf{R} \rightarrow \mathbf{R}$.

更改状态以发布